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An Essay on Statistical Decision Theory

Lawrence D. BROWN

1. A 1966 QUOTATION

The middle third of this century marks the summit of
research in statistical decision theory. Consider this 1966
quotation from the foreword to the volume Early Statistical
Papers of J. Neyman (Neyman 1967), signed “students of
J. N. at Berkeley””

The concepts of confidence intervals and of the Neyman—
Pearson theory have proved immensely fruitful. A natural
but far reaching extension of their scope can be found in
Abraham Wald’s theory of statistical decision functions. The
elaboration and application of the statistical tools related to
these ideas has already occupied a generation of statisticians.
It continues to be the main lifestream of theoretical statistics
[italics mine].

The italicized assertion is the focus of this vignette. Is
the assertion still true today? If not, what is the current
status of statistical decision theory, and what position is
it likely to hold in the coming decades? Any attempt to
answer these questions requires a definition of “statistical
decision theory.” Indeed, the answers will be largely driven
by how broadly—or narrowly—the boundaries of decision
theory are drawn.

2. THE SCOPE OF STATISTICAL DECISION THEORY

The term “statistical decision theory” appears to be a
condensation of Wald’s phrase “the theory of statistical de-
cision functions,” which occurs, for example, in the preface
to his monograph (Wald 1950) as well as earlier in Wald
(1942). Wald viewed his “theory” as a codification and gen-
eralization of the theory of tests and confidence intervals
already developed by Neyman, often in collaboration with
E. Pearson. For clear statements of Wald’s view see the last
two paragraphs of the introduction to Wald’s pivotal paper
(Wald 1939), and section 1.7 of his monograph (Wald 1950).
The vignette on hypothesis testing by Marden presents an
excellent review of the various manifestations of hypothesis
testing. It is hard to choose a favorite among the wonderful
Neyman-Pearson papers on the foundations of testing and
confidence intervals, but I pick the works by Neyman and
Pearson (1933) on testing and Neyman (1935) on confidence
intervals.

The frequentist approach is the cornerstone of Neyman’s
statistical philosophy. Neyman (1941) provided a graphic
demonstration and explanation. Thus one begins the anal-
ysis of any statistical situation with a family of possi-
ble distributions for the data. In the presence of a finite-
dimensional parameterization, this can be written as F =
{Fy : 6 € O}, but the existence of such a parameterization
is only an often-useful convenience, rather than a formal
necessity. One then hypothesizes a possible rule for solv-
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ing the problem (a test or confidence interval, or a decision
function in Wald’s more general terminology). The key step
is to calculate the distribution of outcomes from that rule
as if the true parameter were a fixed value, 6, and compare
the results of such a calculation at various # for various
possible decision rules.

That “as if § were fixed” qualification caused consider-
able confusion in the early years of the theory, and often
continues to do so. It does not mean that 6 is fixed. Ney-
man and Pearson frequently returned to emphasize that this
type of calculation would guarantee validity “irrespective
of the a priori truth.” They denied any presumption that
the statistician would be faced with a long sequence of in-
dependent repetitions of the situation, all having the same
value of . For example, the landmark Clopper and Pear-
son (1934) article on confidence intervals for a binomial
parameter discusses as a particular example what happens
if the Clopper—Pearson prescription is used in a situation
where the unknown parameter, p, can take the values 1/3,
1/2, and 2/3 with a hypothesized skewed a priori distribu-
tion. The point of this calculation is to vividly demonstrate
with an example the claim that the proposed intervals have
coverage probability at least the nominal value, and this
fact “does not depend on any a priori knowledge regarding
possible values of p.” A subsidiary goal may have been to
investigate by how much this nominal value would be ex-
ceeded in such a plausible example. (The answer was that
the true coverage was .9676, as opposed to the nominal
value of .95.) A later discussion related to this general is-
sue appears in Neyman (1952, p. 211). Brown, Cai, and Das
Gupta (1999a,b) recently reexamined the problem of bino-
mial confidence intervals and included a reassessment of
the Clopper—Pearson proposal.

3. THE DECISION THEORETIC SPIRIT

According to the foregoing, the spirit of decision the-
ory is pervasive in contemporary statistical research. Com-
mon manifestations include both mathematical and numer-
ical attempts to check the frequentist performance of pro-
posed procedures. This includes comparative investigations
of level and power for hypothesis tests or of precision
of proposed estimators as, for example, might occur in a
Monte Carlo comparison of variances and biases. In par-
ticular, any presentation of statistical tests that mentions
power is an embodiment of this spirit.

The frequentist interpretation of confidence intervals (and
sets) relies on Neyman’s previously cited articles as well as
Wilson (1927) and the previously cited work of Clopper
and Pearson. Note also the general formulation by Wald
and Wolfowitz (1939, 1941) of nonparametric confidence
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bands for a cumulative distribution function, and their dis-
covery that a fundamental probabilistic question they could
not solve had earlier been settled by Kolmogorov (1933)
and Smirnov (1939).

4. SEQUENTIAL ANALYSIS

Wald was justifiably proud of his formulation of sequen-
tial decision problems and his solution of fundamental is-
sues there, as in the optimal property of the sequential prob-
ability ratio test presented by Wald and Wolfowitz (1950).
Wald (1947) cited a few historical precedents in the work
of others, but there is no question that this entire statis-
tical area was his creation. The spirit of his development
survives in parts of contemporary statistics and even flour-
ishes in some, as in the methodology of early stopping for
(sequential) clinical trials; for example, via group sequen-
tial testing or stochastic curtailment. Jennison and Turnbull
(1990) contains a fairly recent review of clinical trials, and
Siegmund (1994) provides a broader review of the current
status of Wald’s sequential analysis. As a prelude to my
later discussion, let me already note that in this area the
analytic tools originally developed by Wald (and later ex-
tended and refined by others) survive as essential building
blocks in contemporary research.

5. MINIMAXITY AS A THEME AND BENCHMARK

I have argued (Brown 1994) that the minimax idea has
been an essential foundation for advances in many areas of
statistical research. These include general asymptotic theory
and methodology, hierarchical models, robust estimation,
optimal design, and nonparametric function analysis. The
vignette on minimaxity by W. Strawderman clarifies and
reinforces this assertion. Hence here I do not specifically
pursue this crucial manifestation of the spirit of decision
theory, although it is very much present in the nonparamet-
ric examples I describe.

6. BAYESIAN STATISTICS

Not so many years ago, “bayesian statistics” was fre-
quently viewed as the antithesis of “frequentist statistics,”
and the feeling among some was that their favorite of these
two theories would eventually triumph as the other failed
ignominiously. It now is apparent that this will not hap-
pen. There is much evidence that we are currently in the
midst of a productive amalgamation of these two schools
of statistics.

The vignette on Bayesian analysis by Berger describes
several different approaches to Bayesian analysis. Interest-
ingly, none of these is directly the pure frequentist ap-
proach, in which the prior is a given distribution with the
same frequentist validity as the family of distributions, F.
Such a situation is a conceptual and sometimes realistic pos-
sibility, but modern Bayesian statistical techniques are in-
tended to apply far beyond this possible scenario. Lehmann
and Casella (1998, p. 226) provided for further discussion
of this state of affairs.
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According to the discussion that began this essay, a pure
frequentist Bayesian approach, where realistic, is firmly
within the decision-theoretic realm. Other fundamental
Bayesian approaches are not, even if they may involve loss
functions and even though they may be justified, at least
in part, by the decision-theoretic version of Bayes theorem
that says the Bayes procedure minimizes the expected risk.
However, most of these approaches are neutral rather than
antithetical with respect to decision theory. Many of them
involve the use of “objective” priors, such as the Jeffreys
prior or the Bernardo (1979) reference priors. These ap-
proaches customarily generate decisions. As such, they can
be viewed as powerful and heuristically appealing mecha-
nisms for generating plausible decision rules. Having used
such a device, the question remains as to how well the rule
that it generates will actually perform in a suitable range
of situations like the one at hand. This decision-theoretic
question is implicit but equally pertinent in varieties of ro-
bust Bayesian analyses and is explicit in the realm of I'-
minimax procedures (see Hodges and Lehmann 1952 for
an early decision-theoretic formulation closely related to
the T-minimax idea). Answering such a question is increas-
ingly (and properly) seen as requiring frequentist-style in-
vestigations of comparative risk through simulations or the-
oretical calculations. Hence what is emerging is a figurative
marriage of Bayes and Wald.

7. THE DECISION THEORETIC TOOLKIT

I have been arguing in general terms that Neyman and
Wald (and also their collaborators and immediate students)
had a particular perspective on statistics, and that this
perspective is alive and thriving in contemporary statis-
tics. Nevertheless, many statisticians apparently feel that
statistical decision theory is moribund—or even already
dead.

Through the decades, various technical analytical tools
have been developed by avowedly decision-theoretic re-
searchers. An assertion that decision theory is dying is prob-
ably more focused on this toolkit than it is on the decision-
theoretic spirit I discussed earlier. Even here, the asser-
tion seems to me in the main to be drastically mistaken,
though one might point to certain tools that are far less
broadly useful than might have been expected at the time
they were being developed. I have in mind as an example of
the latter the general complete-class theory involving char-
acterization of admissible procedures. (Even here there are
significant recent contributions relevant to contemporary
methodology; see, e.g., Berger and Strawderman 1996 and
Zhao 1999.)

This “toolkit” contains a vast array of analytical weapons
for a variety of situations. Furthermore, it has continually
extended and expanded from its original extent and form.
It is impossible in the format of this short, broad survey to
carefully trace the development of even a single important
tool from its origins with Neyman or Wald (and often before
them as well). So T discuss only some examples from one
particular area of research, to try to emphasize the vitality
and importance of that legacy.
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8. NONPARAMETRIC FUNCTION ANALYSIS

8.1 Rates of Convergence

Nonparametric function analysis includes such topics as
nonparametric regression, density estimation, image recon-
struction, and aspects of pattern recognition. As a manifes-
tation of the nonparametric/robust paradigm, it is already
heavily infused with the influence of decision theory. For
confirmation, note that on Efron’s (1998) “barycentric pic-
ture of modern statistical research,” the topic “robustness,
nonparametrics” describes the point most heavily weighted
on the “frequentist” axis, as opposed to the “Bayesian” and
“Fisherian” axes. There should be no debate on this point.
But I want to go further, and describe how several items in
the basic toolkit are of use here.

First, the Waldian notion of loss and risk pervades the
topic. A fundamental feature of this area is the presence
of rates of convergence slower than the usual parametric
standard of 1/,/n. These rates of convergence are for the
risk under any of various loss functions. In particular, the
asymptotics cannot be formulated in Fisherian terms of ef-
ficiency, because the optimal-rate risks under (integrated)
quadratic loss must balance squared bias as well as vari-
ance. Nevertheless, Fisher information and the Cramer-Rao
inequality occasionally can be useful (asin Brown and Low
1991), but the spirit and content of such a treatment are
more directly descended from the admissibility argument
of Hodges and Lehmann (1951) and the two-dimensional
admissibility argument of Stein (1956b).

A precise description of these convergence rates nearly
demands a minimax formulation. An exception is the early
formulation of Rosenblatt (1956) and Parzen (1962), look-
ing at optimal rates available from the use of nonnegative
kernels. Brown, Low, and Zhao (1997) tried to explain why
this is more emphatically so here than in the classical para-
metric theory.

Despite its success, there is a not-untypical shortcoming
in a literal adoption of this minimax formulation—it may
be unhealthily conservative. The formulation assumes that
the unknown function (e.g., regression function or density)
belongs to a suitably bounded class, usually explicitly in-
volving some sort of smoothness restriction. For a basic ex-
ample, in a one-dimensional setting, the assumption might
be that

[ @ya<s

for a prespecified, but possibly large value of B. Corre-
sponding to this class is an asymptotically minimax value
and procedure. An adequate practical approach to this
asymptotic ideal is achievable with computationally feasi-
ble procedures of various types, such as kernels, splines, and
orthogonal series estimators (including wavelets). However,
a procedure that is minimax in this sense, or close to it,
may perform relatively poorly in practice. To see why, con-
sider a typical simple task such as estimating an unknown
probability density. One may suspect that the true density
is quite “smooth”—perhaps it is thought to have a shape
similar to a simple mixture of normal distributions. Vari-
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ous standard optimal minimax convergence rate procedures
do not utilize that suspicion. Instead, they protect against
the possibility that the density is as extremely wiggly as
allowed by the foregoing smoothness restriction. Such ex-
tremely wiggly densities may be felt to be a priori highly
unlikely and/or not very interesting. A current tidal wave
of research into “adaptive” estimators is an attempt to cre-
ate procedures that circumvent this shortcoming by being
simultaneously nearly minimax for a broad inventory of
smoothness classes.

8.2 Hardest Linear Subproblem

The minimax value just mentioned can be discovered to
within a startling degree of accuracy through very beautiful
application of a fundamental device due to Wald in a form
proposed by Stein (1956a) (see Donoho 1994; Donoho and
Liu 1991; Donoho, Liu, and MacGibbon 1990). Consider
the entirely classical parametric situation of an observation
from a multivariate normal distribution with identity covari-
ance matrix but unknown mean. Suppose that one desires to
estimate some linear functional of that mean—for example,
its first coordinate—and uses ordinary quadratic loss. Fur-
ther, suppose the mean is known to lie in a bounded convex
set, S, symmetric about the origin.

Temporarily restrict the class of available estimators to
be linear. Wald’s standard tool for discovering minimax val-
ues is to establish a least favorable distribution. Here that
least favorable distribution turns out to be supported on a
one-dimensional subset of S, say H. That is, for linear es-
timators, there is a “hardest one-dimensional subproblem.”
The minimax risk for the problem on S unrestricted to lin-
ear estimators cannot be less than that for the unrestricted
problem on H. One then gets to look at an even more clas-
sical problem. Let X ~ N(6,1) with 0 € (—a,a). What is
the minimax risk (under squared error loss), and what is
its relation to the minimax risk among linear procedures?
This question had been studied by Casella and Strawder-
man (1981), among others. Extending their result, Donoho
et al. (1990) showed that the ratio of the two risks is never
greater than 1.25.

This very classical (but nevertheless recent) minimax the-
orem about estimation of a multivariate normal mean can
then be carried into the nonparametric realm with the aid
of a further set of decision-theoretic tools for asymptotics
largely developed by Le Cam (see, e.g., LeCam 1953, 1986).

The end result from using this decision theoretic arsenal
is a powerful result enabling one to calculate the (asymp-
totic) minimax risk to within a factor of 1.25 and, even
more important, to know how to get a (linear) procedure
that comes within this factor of being minimax. Interest-
ingly, this idea works for various loss functions in addition
to squared error (see Donoho 1994).

8.3 Asymptotic Equivalence

Further utilization of Le Cam’s decision theoretic ideas
has proved valuable in this area. LeCam (1953, 1964, 1986)
created a general concept of equivalence of statistical prob-
lems within the framework of Wald’s decision theory. With
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the aid of additional inequalities also due at least partly
to Le Cam, one can unify and greatly simplify asymptotic
investigations similar to those sketched earlier.

To explain, I return briefly to a more classical parametric
setting. Asymptotic questions in such settings very often
can be efficiently reduced to appropriate questions involv-
ing only normal distributions. These normal distribution set-
tings can effectively be viewed as the limit of the original
problem as the sample size tends to infinity. This aspect of
statistical theory has its roots well before Neyman and Wald
and, I believe, lies well outside the scope of what should
be considered characteristically decision theoretic. Never-
theless, both Neyman and Wald recognized its importance,
made important contributions in the area, and incorporated
asymptotical analyses into their basic theories. Prominent
examples are Wald’s (1943) proof of the asymptotic op-
timality of the likelihood ratio test and Neyman’s (1949)
explication of “best asymptotically normal” procedures.

In an analogous fashion the stochastic formulation of
white noise with drift can serve as a useful, unified limit for
nonparametric formulations like those already mentioned.
Research on this topic is ongoing, but Brown and Low
(1996) and Nussbaum (1996) have given basic results.

By all measures, wavelets provide a powerful new tool
for nonparametric function analysis. The continuing devel-
opment of this tool has evolved out of a combination of the
function-analytic topic of wavelet bases with an intensive
and extensive dose of decision theory, along with a careful
evaluation of the practical problems requiring the statisti-
cal techniques being created. The debt to decision theory
will be immediately evident to any reader of the funda-
mental works of Donoho and Johnstone and collaborators
(e.g., Donoho and Johnstone 1995, 1998).

In this development there is a continuing expansion of
the ideas present in the minimax treatment of Donoho et
al. described previously. I will not go into further detail
about that. Instead, I mention two quite different decision-
theoretic aspects. One is the incorporation of Stein’s un-
biased estimate of the risk. Stein’s powerful technical tool
was developed as a more effective way of handling certain
admissibility questions that arose following his surprising
discovery of the inadmissibility of the usual estimator of
a multivariate normal mean (see Brown 1979; James and
Stein 1961; Stein 1956, 1973, 1981). Donoho and John-
stone (1995) cited this technique as the defining element of
a class of wavelet estimators that they called SURE-type
estimators.

A more unexpected combination of techniques is the ap-
plication of Benjamini and Hochberg (1995) in the con-
struction of wavelet estimators. Benjamini and Hochberg
created an interesting new proposal for the problem of mul-
tiple comparisons. Their idea is to control what they term
the “false discovery rate” (FDR). The issue of multiple com-
parisons is heavily decision theoretic in orientation and de-
velopment. Nevertheless, the basic problem that Benjamini
and Hochberg addressed would seem quite distant from the
issues relevant to wavelet estimation. But Abramowich and
Benjamini (1995), Abramowich, Benjamini, Donoho, and
Johnstone (1999), and Johnstone (1999) described an impor-
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tant and productive connection between FDR and adaptive
wavelet estimation.

9. MONTE CARLO INVESTIGATIONS: A CHALLENGE
FOR FUTURE THEORY

I have been focusing on what I termed the decision-
theoretic toolkit. I believe that this kit is largely complete
and that the focus of future research will involve use of
these tools, as in the foregoing stories about nonparametric
functional analysis. Of course, I could be wrong. There is
some interesting, continuing toolbuilding going on (as, e.g.,
in Eaton 1992). Then, too, maybe some brand new tool is
just waiting to be discovered—perhaps a biased estimate of
risk that will prove even more useful than Stein’s unbiased
estimate. Or maybe an accumulation of results developing
out of the current toolkit will become recognized as an in-
dependently powerful tool on its own.

However, there is at least one place where I think we are
lacking a general decision-theoretic tool of a new sort. As
I have noted, risk comparisons of proposed procedures are
often performed via simulation. (We may be simulating the
performance of the respective proposals in terms of level
and power or expected coverage and, sometimes, expected
length or size, or in terms of bias and variance, or just to
discover their sampling distribution, leaving the determina-
tion of comparative risk to the reader.)

These simulation results can provide important practical
validation of an asymptotic result or of a persuasive heuris-
tic model. However, they do not have the intellectual force
of a mathematical proof. That is, in a complex situation
I may be able to convince you with simulations that pro-
cedure A is better than procedure B, but rarely, if ever,
can I prove it that way. This is primarily because simu-
lations can be performed only at specific alternatives and
sample sizes, and there are usually too many such alterna-
tives of interest for an adequate simulation to be performed
at each one. Hence the decision-theoretic challenge of find-
ing a methodology for converting the simulational power
of the computer into a tool able to deliver the persuasive
force of a mathematical proof.
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